

🜔 tifr Tata Institute of Fundamental Research

Survey No. 36/P, Gopanpally Village, Serilingampally, Ranga Reddy Dist., Hyderabad - 500 046

## Seminar

#### **Optimal Control Protocols for the F\_1-ATPase Motor**

### **Deepak Gupta**

#### **IIT**, Indore

A biomolecular motor composed of protein complexes exchanges energy, matter, and information with its surroundings. Despite being in contact with a fluctuating environment, it performs (on average) a directed motion in accordance with the second law by transducing chemical stored in the surrounding environment. Among several energy biomolecular motors the  $F_0$   $F_1$ -ATP synthase has gained much attention due to its high efficiency. It produces ~95% of the cellular ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and P<sub>i</sub> (inorganic phosphate). The membrane-embedded  $F_0$ -unit utilises energy from proton flux to rotate the F<sub>1</sub>-unit's y-crankshaft and synthesises ATP molecules. Since the y-crankshaft rotates as fast as ~350 revolutions per second, it remains a puzzle how  $F_0 F_1$  transduces free energy in a highly efficient manner. One possible way to investigate this is to uncover the functional principle of that particular unit where ATP is synthesised, i.e., the F<sub>1</sub>-ATPase. To this end, we focus on an isolated F<sub>1</sub>-ATPase, which can also be controlled in an experimental setup. We design a control protocol (mimicking  $F_0$  operation) by which the  $F_1$  unit's y-crankshaft can be rotated to synthesise ATP at low dissipation. We follow a near-equilibrium framework to construct a non-trivial designed protocol. Then, we rotate the crankshaft with this designed protocol to compute dissipation. Our analysis reveals that the designed protocol dissipates less energy than a constant velocity protocol for a wide range of protocol durations.

# Tuesday, Aug 13<sup>th</sup> 2024 16:00 Hrs (Tea / Coffee 15:45 Hrs) Auditorium, TIFR-H