

Comprehensive Seminar

Investigating the physiological stoichiometry of CRAC channels and its role in calcium signalling

Atharva Rahul Yande

TIFR, Hyderabad

Calcium (Ca²⁺), a universal second messenger, is critical for numerous biological processes, including T-cell activation. Store-operated Ca2+ entry (SOCE) mediated by Ca2+ releaseactivated Ca2+ (CRAC) channels is a ubiquitous mode of calcium influx in almost all cells. CRAC channel pore is formed by Orai proteins. While the crystal structure of Drosophila Orai suggests a hexameric channel, the native stoichiometry of the human CRAC channel remains debated. We hypothesize that mammalian Orai1 channels exhibit flexible stoichiometry on the plasma membrane depending on stimuli and may also form heteromeric channels with other Orai homologs (Orai2 and resulting in variable channel properties. Orai3), The stoichiometric flexibility could explain the distinct Ca²⁺ influx patterns observed in response to diverse T-cell stimuli. In this seminar, I will discuss the stoichiometry of CRAC channels, its dynamic flexibility in response to various stimuli and potential role in fine-tuning Ca²⁺ signalling in T-cells.

Wednesday, Dec 18th 2024 09:30 Hrs (Tea / Coffee 09:15 Hrs) Auditorium, TIFRH