
Kohinoor3 Cluster
User/Admin Manual

Intel Xeon 1380 cores HPC Cluster
At

Tata Institute of Fundamental Reasearch (TIFR)
Hydrabad

By

Netweb Technologies India Pvt. Ltd.
Plot No-H1, Pocket- 9,

Faridabad Industrial Town (FIT)
Sector- 57, Faridabad, Ballabgarh,

State – Haryana- 121004, India

Contents

1. About Document
1.1. Document History
1.2. Netweb Technologies India Pvt Ltd Contact Details
1.3. Target Group
1.4. Typographic Conventions

2. Introduction
2.1. About Clustering
2.2. High-Performance Computing (HPC)
2.3. HPC Stack

3. KOHINOOR3 Implementation
3.1. Servers Hardware Details
3.2. Switches and Connectivity
3.3. Storage
3.4. Operating System–CentOS
3.5. Cluster Management

 3.6 Module Management
3.7. Software–Compilers, Libraries, Visualization and

Applications
3.8. HPC Scheduler–SLURM
3.9. Troubleshooting SLURM
3.10. Monitoring Tool-Ganglia
3.11. System Management – server suite

4. Startup & shutdown procedures
4.1. Shutdown sequence
4.2. Startup sequence

5. Support Escalation Matrix

Chapter 1
About Document

1.1 Document History

Version Release Date Prepared by

1.0 28 Aug 2016 Netweb Technologies India Pvt Ltd.

1.2 Netweb Technologies India Pvt Ltd Contact Details
Please refer page number for “Support Escalation Matrix”

1.3 Target Group
This document is designed for End-Users for reference of

technical and usage details. In this document, it has been tried to
provide a clear-cut theoretical picture and practical approach to
use the cluster in a better way.

1.4 Typographic Conventions
Four typographic conventions are used to call attention to

specific words and phrases.These conventions, and the
circumstances they apply to, are as follows:

Arial 16 Bold Centered
Used to specify Chapter Headings

Trebuchet MS 12 Bold
Used to specify side-headings and sub-headings in a chapter

with/without sub-heading number

Trebuchet MS 12 Bold
Trebuchet MS 12 Bold

Used to specify the heading that is again a sub-heading of a
side-heading

Courier New 12 Bold or Courier New 12
Used to specify the system commands and output

Chapter 2
Introduction

2.1 About Clustering

A computer cluster is a group of linked computers, working
together closely thus in many respects forming a single computer.
The components of a cluster are commonly, but not always,
connected to each other through fast local area networks.
Clusters are usually deployed to improve performance and
availability over that of a single computer, while typically being
much more cost-effective than single computers of comparable
speed or availability.

Cluster categorizations

a. Compute clusters:

Often clusters are used primarily for computational purposes,
rather than handling IO-oriented operations such as web service
or databases. For instance, a cluster might support computational
simulations of weather or vehicle crashes. The primary distinction
within computer clusters is how tightly-coupled the individual
nodes are. For instance, a single computer job may require
frequent communication among nodes-this implies that the
cluster shares a dedicated network, is densely located, and
probably has homogeneous nodes. This cluster design is usually
referred to as Beowulf Cluster. The other extreme is where a
computer job uses one or few nodes, and needs little or no inter-
node communication. This latter category is sometimes called
"Grid" computing. Tightly-coupled compute clusters are designed
for work that might traditionally have been called
"supercomputing". Middleware such as MPI (Message Passing
Interface) or PVM (Parallel Virtual Machine) permits compute
clustering programs to be portable to a wide variety of clusters.

2.2.High-Performance Computing (HPC):

High-performance computing (HPC) uses supercomputers
and computer clusters to solve advanced computation problems.
Today, computer systems approaching the teraflops-region are
counted as HPC-computers.

HPC integrates systems administration and parallel
programming into a multidisciplinary field that combines digital
electronics, computer architecture, system software,
programming languages, algorithms and computational
techniques. HPC technologies are the tools and systems used to
implement and create high performance computing systems.
Recently, HPC systems have shifted from supercomputing to
computing clusters and grids. Because of the need of networking
in clusters and grids, High Performance Computing.
Technologies are being promoted by the use of a collapsed
network backbone, because the collapsed backbone architecture
is simple to troubleshoot and upgrades can be applied to a single
router as opposed to multiple ones.

The term is most commonly associated with computing used
for scientific research or computational science. A related term,
high-performance technical computing (HPTC), generally refers to
the engineering applications of cluster-based computing (such as
computational fluid dynamics and the building and testing of
virtual prototypes). Recently, HPC has come to be applied to
business uses of cluster-based supercomputers, such as data
warehouses, line-of-business (LOB) applications, and transaction
processing.

High-performance computing (HPC) is a term that arose after
the term "supercomputing." HPC is sometimes used as a synonym
for supercomputing; but, in other contexts, "supercomputer" is
used to refer to a more powerful subset of "high-performance
computers," and the term "supercomputing" becomes a subset of
"high-performance computing." The potential for confusion over
the use of these terms is apparent.

Because most current applications are not designed for HPC
technologies but are retrofitted, they are not designed or tested
for scaling to more powerful processors or machines. Since
networking clusters and grids use multiple processors and
computers, these scaling problems can cripple critical systems in
future supercomputing systems. Therefore, either the existing
tools do not address the needs of the high performance
computing community or the HPC community is unaware of these
tools. A few examples of commercial HPC technologies are the
simulation of car crashes for structural design, molecular
interaction for new drug design and the airflow over automobiles
or airplanes. In government and research institutions, scientists
are simulating galaxy creation, fusion energy, and global warming,
as well as working to create more accurate short-and long-term
weather forecasts.

2.3. HPC Stack:

HPC Stack is a cluster components’ stack which explains about
different components which uses in HPC cluster implementation
and its dependencies on one another. Below figure shows a brief
view about components and its dependency.

 HPC Stack

a. Hardware:

Servers: 32-bit/64-bit servers, which generally have rich
hardware resources like Multi-core processors,RAM, Storage, etc.

Storage: Storage may be internal, which is attached to Master
node internally i.e. internal HDDs or external.Generally external
storage can be configured for home directory and backup.

Ethernet: Ethernet provides a conventional intercommunication
among all nodes. This requires Ethernet NIC, Ethernet switch and
its cables.

Infiniband: Infiniband gives much faster communication than
conventional Ethernet communication. It improves the job
execution speed and inter-node communication. To configure
Infiniband, setup requires three things–Infiniband
Cards,Infiniband switch and its cables.

HPC hardware is combination of at least one Master Node,
many Compute Nodes, Storage, Network and Storage Switches,
connectivitychannels/cables, etc. Master node is a special server
which plays an administrator role for whole cluster. It provides a
centralized facility to create/delete users, create ACLs, and define
roles for different compute nodes, installation of software and
many administrative activities. It is mandatory for any HPC cluster
that one node should be master node but according to
requirement, it can be configuring more than one master node.

In Kohinoor3 implementation, the cluster has been
configured with Single master nodes configuration.

b. Operating System:

Operating System plays a great foundational role in cluster
configuration. OS manages all resources properly according to
specifications and configuration. Apart from hardware
management, it is mandatory to create and configure some special
things like ssh password-free environment, centralized home
directory management, synchronization of user information,
facility to execute commands concurrently across the cluster
nodes, etc.

On top of Kohinoor3 server hardware, XCAT cluster toolkit
has been installed with CentOS 7.2 Operating system.

c. Libraries:

Library is a collection of resources used to develop software.
These may include pre-written code and subroutines, classes,
values or type specifications. Libraries contain code and data that
provide services to independent programs. This allows the sharing
and changing of code and data in a modular fashion. Some
executables are both standalone programs and libraries, but most
libraries are not executable. Executables and libraries make
references known as links to each other through the process
known as linking, which is typically done by a linker.

Here in HPC Stack, libraries mean development libraries both
serial and parallel which are associated with compilers and other
HPC programs to run jobs.

Originally, only static libraries existed. A static library, also
known as an archive, consists of a set of routines which are copied
into a target application by the compiler, linker, or binder,
producing object files and a stand-alone executable file. This
process, and the stand-alone executable file, is known as a static
build of the target application. Actual addresses for jumps and
other routine calls are stored in a relative or symbolic form which

cannot be resolved until all code and libraries are assigned final
static addresses.

Dynamic linking involves loading the subroutines of a library
into an application program at load time or run-time, rather than
linking them in at compile time. Only a minimum amount of work
is done at compile time by the linker; it only records what library
routines the program needs and the index names or numbers of
the routines in the library. The majority of the work of
linking is done at the time the application is loaded (load time) or
during execution (runtime).

In addition to identifying static and dynamic loading,
computer scientists also often classify libraries according to how
they are shared among programs. Dynamic libraries almost always
offer some form of sharing, allowing the same library to be used
by multiple programs at the same time. Static libraries, by
definition, cannot be shared.

With CentOS 7.2 on Kohinoor3, glibc is installed for OS and
developmental activities.

The GNU C Library, commonly known as glibc, is the C
standard library released by the GNU Project. Originally written by
the Free Software Foundation (FSF) for the GNU operating system,
the library's development has been overseen by a committee since
2001, with Ulrich Drepper from Red Hat as the lead contributor
and maintainer.

d. Compilers:

A compiler is a computer program (or set of programs) that
transforms source code written in a programming language (the
source language) into another computer language (the target
language, often having a binary form known as object code). The
most common reason for wanting to transform source code is to
create an executable program.

The GNU Compiler Collection (GCC) is a compiler system

produced by the GNU Project supporting various programming
languages. GCC is a key component of the GNU tool chain. As well
as being the official compiler of the unfinished GNU operating
system, GCC has been adopted as the standard compiler by most
other modern Unix-like computer operating systems, including
Linux, the BSD family and Mac OS X.

Originally named the GNU C Compiler, because it only
handled the C programming language, GCC 1.0 was released in
1987, and the compiler was extended to compile C++ in December
of that year. Front ends were later developed for FORTRAN,
Pascal, Objective-C, Java, and Ada, among others.

e. Scheduler:

A job scheduler is a software application that is in charge of
unattended background executions, commonly known for
historical reasons as batch processing. Synonyms are batch
system, Distributed Resource Management System (DRMS), and
Distributed Resource Manager (DRM). Today's job schedulers
typically provide a graphical user interface and a single point of
control for definition and monitoring of background executions in
a distributed network of computers. Increasingly job schedulers
are required to orchestrate the integration of real-time business
activities with traditional background IT processing, across
different operating system platforms and business application
environments.

Basic features expected of job scheduler software are:
Interfaces which help to define workflows and/or job
dependencies, automatic submission of executions, interfaces to
monitor the executions and priorities and/or queues to control the
execution order of unrelated jobs.

An important niche for job schedulers is managing the job
queue for a cluster of computers. Typically, the scheduler will
schedule jobs from the queue as sufficient resources (cluster

nodes) become idle. Some widely used cluster batch systems are
Sun Grid Engine, Portable Batch System, Load Leveler, Condor,
OAR and Simple Linux Utility for Resource Management(Slurm).

For Kohinoor3 resources management, Simple Linux Utility
for Resource Management is a open-source HPC job scheduler.
The Simple Linux Utility for Resource Management (Slurm) is an
open source, fault-tolerant, and highly scalable cluster
management and job scheduling system for large and small Linux
clusters. Slurm requires no kernel modifications for its operation
and is relatively self-contained. As a cluster workload manager,
Slurm has three key functions. First, it allocates exclusive and/or
non-exclusive access to resources (compute nodes) to users for
some duration of time so they can perform work. Second, it
provides a framework for starting, executing, and monitoring work
(normally a parallel job) on the set of allocated nodes. Finally, it
arbitrates contention for resources by managing a queue of
pending work.

f. Monitoring Tools:

A system monitor or monitoring tool is hardware or
software- based system used to monitor resources and
performance in a computer system.

Ganglia is a scalable distributed system monitor tool for
high-performance computing systems such as clusters and grids. It
allows the user to remotely view live or historical statistics (such
as CPU load averages or network utilization) for all machines that
are being monitored.

g. MPI:

Message Passing Interface (MPI) is an API specification that
allows processes to communicate with one another by sending
and receiving messages. Besides many other applications, it is a de
facto standard for parallel programs running on computer clusters
and supercomputers, where the cost of accessing non-local
memory is high. MPI was created since 1992 by William Gropp,

Ewing Lusk and others, a first standard appeared in 1994.

MPI is a language-independent communications protocol
used to program parallel computers. Both point-to-point and
collective communication are supported. MPI "is a message-
passing application programmer interface,together with protocol
and semantic specifications for how its features must behave in
any implementation." MPI's goals are high performance,
scalability, and portability. MPI remains the dominant model used
in high-performance computing today.

At present, the standard has several popular versions:
version 2.0 (shortly called MPI–1), which emphasizes message
passing and has a static runtime environment, and MPI–2.2 (MPI–
2), which includes new features such as parallel I/O, dynamic
process management and remote memory operations.

MPI–2's LIS specifies over 500 functions and provides language
bindings for ANSI C, ANSI Fortran (Fortran90), and ANSI C++.
Object interoperability was also added to allow for easier mixed-
language message passing programming. A side–effect of MPI–2
standardization (completed in 1996) was clarification of the MPI–1
standard, creating the MPI–1.2. Note that MPI–2 is mostly a
superset of MPI–1, although some functions have been
deprecated. MPI–1.3 programs still work under MPI
implementations compliant with the MPI–2 standard.

Open MPI is an Message Passing Interface (MPI) library
project combining technologies and resources from several other
projects (FT-MPI, LA-MPI,LAM/MPI, and PACX-MPI). It is used by
many TOP500 supercomputers including Roadrunner, which was
the world's fastest supercomputer from June 2008 to November
2009, and K computer, the fastest supercomputer since June
2011.

h. Applications:
Application program can be any program which can either

run on individually on different nodes or on across the node in a
parallelized manner. HPC applications are programs which may be
designed by end-user or purchased from third party software
vendors. Applications may be serial or parallel but this is all
depends on the end-user and his requirement which decides.

Chapter 3
KOHINOOR3 Implementation

1. IB Switch
2. Ethernet Switch
3. Compute nodes
4. Monitor
5. GPU nodes
6. Master Node
7. Storage

Here we have impelemented KOHINOOR3 diagram with
different colour coding which will help you to understand actuall
representation of the cluster.

 KOHINOOR3 Rack Setup View

3.1. Servers Hardware Details
In KOHINOOR3 cluster, there is a single master node, 32

compute nodes. The following are the hardware details of Servers:

Master Node:

Hardware Details – Supermicro

Processor 2 x E5-2630 V4

RAM 64 GB

HDD 4x600 GB SAS

Ethernet 2 port

Management Port 1 port

Infiniband 1 port

Optical Drive DVD Drive

OS Details

OS CentOS 7.2

Kernel 3.10.0-327.el7.x86_64

Partition Details

/ 100 GB

Swap 32 GB

/home 200 TB

/apps 300 GB

/boot 1 GB

Compute Node:

Hardware Details – Supermicro

Processor 2 x E5-2630 V4

RAM 64 GB

HDD 1 TB SATA

Ethernet 2 port

Management Port 1 port

Infiniband 1 port

OS Details

OS CentOS 7.2

Kernel 3.10.0-327.el7.x86_64

Partition Details

/ 100 GB

Swap 32 GB

/boot 1 GB

GPU Compute Node:

Hardware Details – Supermicro

Processor E5-2630 V4

RAM 64 GB

HDD 1 TB

Ethernet 2 port

Management Port 1 port

GPU Tesla K40 C

Infiniband 1 port

OS Details

OS CentOS 7.2

Kernel 3.10.0-327.el7.x86_64

Partition Details

/ 100 GB

Swap 32 GB

/boot 1 GB

Storage Nodes:

Hardware Details – Supermicro

Processor 2 x E5-1650 V3

RAM 128 GB

HDD 2 x 80GB SSD

Ethernet 2 port

Management Port 1 port

Infiniband 1 port

Optical Drive DVD Drive

OS Details

OS CentOS 7.2

Kernel 3.10.0-327.el7.x86_64

Partition Details

/ 62 GB

Swap 64 GB

/boot 1 GB

3.2. Switches and Connectivity:

In Kohinoor3 implementation, two types of switches has
been used – Ethernet, Infiniband switches.

Ethernet Switch:
In Kohinoor3 implementation, 48 Port Gigabit supermicro

Switch has been used to configure the private network and in
figure 3.2, Ethernet connectivity has been explained:

SSE-G2252 48 Port Gigabit Switch

MSX6025F-1SFS 36 port Infiniband Switch

Infiniband Switch:

In Kohinoor,3 one Infiniband switch with 36 ports for HPC
Application/MPI communication. All the nodes including master
have been IBSwitch.

The complete connectivity diagram among all hardware
components has been explained by a schematic diagram in below
figure Kohinoor3 Schematic Diagram.

The connectivity as explained above, the IP configuration details are:
SNo Hostname Ethernet IP IB IP Management IP Internal Conn.

1 Kohinoor3 192.168.102.254 192.168.12.254 11.11.11.254 172.16.10.24

2 r1c1a 192.168.102.1 192.168.12.1 11.11.11.1

3 r1c1b 192.168.102.2 192.168.12.2 11.11.11.2

4 r1c1c 192.168.102.3 192.168.12.3 11.11.11.3

5 r1c1d 192.168.102.4 192.168.12.4 11.11.11.4

6 r1c2a 192.168.102.5 192.168.12.5 11.11.11.5

7 r1c2b 192.168.102.6 192.168.12.6 11.11.11.6

8 r1c2c 192.168.102.7 192.168.12.7 11.11.11.7

9 r1c2d 192.168.102.8 192.168.12.8 11.11.11.8

10 r1c3a 192.168.102.9 192.168.12.9 11.11.11.9

11 r1c3b 192.168.102.10 192.168.12.10 11.11.11.10

12 r1c3c 192.168.102.11 192.168.12.11 11.11.11.11

13 r1c3d 192.168.102.12 192.168.12.12 11.11.11.12

14 r1c4a 192.168.102.13 192.168.12.13 11.11.11.13

15 r1c4b 192.168.102.14 192.168.12.14 11.11.11.14

16 r1c4c 192.168.102.15 192.168.12.15 11.11.11.15

17 r1c4d 192.168.102.16 192.168.12.16 11.11.11.16

18 r1c5a 192.168.102.17 192.168.12.17 11.11.11.17

19 r1c5b 192.168.102.18 192.168.12.18 11.11.11.18

20 r1c5c 192.168.102.19 192.168.12.19 11.11.11.19

21 r1c5d 192.168.102.20 192.168.12.20 11.11.11.20

22 r1c6a 192.168.102.21 192.168.12.21 11.11.11.21

23 r1c6b 192.168.102.22 192.168.12.22 11.11.11.22

24 r1c6c 192.168.102.23 192.168.12.23 11.11.11.23

25 r1c6d 192.168.102.24 192.168.12.24 11.11.11.24

26 r1c7a 192.168.102.25 192.168.12.25 11.11.11.25

27 r1c7b 192.168.102.26 192.168.12.26 11.11.11.26

28 r1c7c 192.168.102.27 192.168.12.27 11.11.11.27

29 r1c7d 192.168.102.28 192.168.12.28 11.11.11.28

30 r1c8a 192.168.102.29 192.168.12.29 11.11.11.29

31 r1c8b 192.168.102.30 192.168.12.30 11.11.11.30

32 r1c8c 192.168.102.31 192.168.12.31 11.11.11.31

33 r1c8d 192.168.102.32 192.168.12.32 11.11.11.32

34 r1c9a 192.168.102.33 192.168.12.33 11.11.11.33

35 r1c9b 192.168.102.34 192.168.12.34 11.11.11.34

36 r1c9c 192.168.102.35 192.168.12.35 11.11.11.35

37 r1c9d 192.168.102.36 192.168.12.36 11.11.11.36

38 r2c16a 192.168.102.37 192.168.12.37 11.11.11.37

39 r2c16b 192.168.102.38 192.168.12.38 11.11.11.38

40 r2c16c 192.168.102.39 192.168.12.39 11.11.11.39

41 r2c16d 192.168.102.40 192.168.12.40 11.11.11.40

42 r3c10a 192.168.102.41 192.168.12.41 11.11.11.41

43 r3c10b 192.168.102.42 192.168.12.42 11.11.11.42

44 r3c10c 192.168.102.43 192.168.12.43 11.11.11.43

45 r3c10d 192.168.102.44 192.168.12.44 11.11.11.44

46 r3c11a 192.168.102.45 192.168.12.45 11.11.11.45

47 r3c11b 192.168.102.46 192.168.12.46 11.11.11.46

48 r3c11c 192.168.102.47 192.168.12.47 11.11.11.47

49 r3c11d 192.168.102.48 192.168.12.48 11.11.11.48

50 r3c12a 192.168.102.49 192.168.12.49 11.11.11.49

51 r3c12b 192.168.102.50 192.168.12.50 11.11.11.50

52 r3c12c 192.168.102.51 192.168.12.51 11.11.11.51

53 r3c12d 192.168.102.52 192.168.12.52 11.11.11.52

54 r3c13a 192.168.102.53 192.168.12.53 11.11.11.53

55 r3c13b 192.168.102.54 192.168.12.54 11.11.11.54

56 r3c13c 192.168.102.55 192.168.12.55 11.11.11.55

57 r3c13d 192.168.102.56 192.168.12.56 11.11.11.56

58 r3c14a 192.168.102.57 192.168.12.57 11.11.11.57

59 r3c14b 192.168.102.58 192.168.12.58 11.11.11.58

60 r3c14c 192.168.102.59 192.168.12.59 11.11.11.59

61 r3c14d 192.168.102.60 192.168.12.60 11.11.11.60

62 r3c15a 192.168.102.61 192.168.12.61 11.11.11.61

63 r3c15b 192.168.102.62 192.168.12.62 11.11.11.62

64 r3c15c 192.168.102.63 192.168.12.63 11.11.11.63

65 r3c15d 192.168.102.64 192.168.12.64 11.11.11.64

66 gpu1 192.168.102.65 192.168.12.65 11.11.11.65

67 gpu2 192.168.102.66 192.168.12.66 11.11.11.66

68 gpu3 192.168.102.67 192.168.12.67 11.11.11.67

69 rgpu4 192.168.102.68 192.168.12.68 11.11.11.68

70 mds1 192.168.102.69 192.168.12.69 11.11.11.69

71 mds2 192.168.102.70 192.168.12.70 11.11.11.70

3.3. Storage:

Lustre is a type of parallel distributed file system,
generally used for large-scale cluster computing. The name Lustre
is a portmanteau word derived from Linux and cluster.Lustre file
system software is available under the GNU General Public License
(version 2 only) and provides high performance file systems for
computer clusters ranging in size from small workgroup clusters to
large-scale, multi-site clusters.

The Lustre file system architecture was started as a research
project in 1999 by Peter Braam, who was on the staff of Carnegie
Mellon University (CMU) at the time. Braam went on to found his
own company Cluster File Systems in 2001, starting from work on
the InterMezzo file system in the Coda project at CMU. Lustre was
developed under the Accelerated Strategic Computing Initiative
Path Forward project funded by the United States Department of
Energy, which included Hewlett-Packard and Intel. In September
2007, Sun Microsystems acquired the assets of Cluster File
Systems Inc. including its intellectual property. Sun included
Lustre with its high-performance computing hardware offerings,
with the intent to bring Lustre technologies to Sun's ZFS file
system and the Solaris operating system. In November 2008,
Braam left Sun Microsystems, and Eric Barton and Andreas Dilger
took control of the project. In 2010 Oracle Corporation, by way of
its acquisition of Sun, began to manage and release Lustre.

In December 2010, Oracle announced they would cease
Lustre 2.x development and place Lustre 1.8 into maintenance-
only support creating uncertainty around the future development
of the file system. Following this announcement, several new
organizations sprang up to provide support and development in
an open community development model, including Whamcloud,
Open Scalable File Systems, Inc. (OpenSFS), EUROPEAN Open File
Systems (EOFS) and others. By the end of 2010, most Lustre
developers had left Oracle. Braam and several associates joined
the hardware-oriented Xyratex when it acquired the assets of
ClusterStor, while Barton, Dilger, and others formed software
startup Whamcloud, where they continued to work on Lustre.

In August 2011, OpenSFS awarded a contract for Lustre
feature development to Whamcloud. This contract covered the
completion of features, including improved Single Server

Metadata Performance scaling, which allows Lustre to better take
advantage of many-core metadata server; online Lustre
distributed filesystem checking (LFSCK), which allows verification
of the distributed filesystem state between data and metadata
servers while the filesystem is mounted and in use; and
Distributed Namespace (DNE), formerly Clustered Metadata
(CMD), which allows the Lustre metadata to be distributed across
multiple servers. Development also continued on ZFS-based back-
end object storage at Lawrence Livermore National
Laboratory.These features were in the Lustre 2.2 through 2.4
community release roadmap. In November 2011, a separate
contract was awarded to Whamcloud for the maintenance of the
Lustre 2.x source code to ensure that the Lustre code would
receive sufficient testing and bug fixing while new features were
being developed.

In July 2012 Whamcloud was acquired by Intel, after
Whamcloud won the FastForward DOE contract to extend Lustre
for exascale computing systems in the 2018 timeframe. OpenSFS
then transitioned contracts for Lustre development to Intel.

In February 2013, Xyratex Ltd., announced it acquired the
original Lustre trademark, logo, website and associated
intellectual property from Oracle. In June 2013, Intel began
expanding Lustre usage beyond traditional HPC, such as within
Hadoop. For 2013 as a whole, OpenSFS announced request for
proposals (RFP) to cover Lustre feature development, parallel file
system tools, addressing Lustre technical debt, and parallel file
system incubators.[30] OpenSFS also established the Lustre
Community Portal, a technical site that provides a collection of
information and documentation in one area for reference and
guidance to support the Lustre open source community. On April
8, 2014, Ken Claffey announced that Xyratex/Seagate is donating
the lustre.org domain back to the user community, and was

completed in March, 2015.

Lustre Components

The Lustre file system is made up of an underlying set of
I/O servers called Object Storage Servers (OSSs) and disks called
Object Storage Targets (OSTs). The file metadata is controlled by a
Metadata Server (MDS) and stored on a Metadata Target (MDT). A
single Lustre file system consists of one MDS and one MDT. The
functions of each of these components are described in the
following list:

• Object Storage Servers (OSSs) manage a small set of OSTs

by controlling I/O access and handling network requests to
them. OSSs contain some metadata about the files stored on
their OSTs. They typically serve between 2 and 8 OSTs, up to
16 TB in size each.

• Object Storage Targets (OSTs) are block storage devices

that store user file data. An OST may be thought of as a
virtual disk, though it often consists of several physical disks,
in a RAID configuration for instance. User file data is stored in
one or more objects, with each object stored on a separate
OST. The number of objects per file is user configurable and
can be tuned to optimize performance for a given workload.

• The Metadata Server (MDS) is a single service node that

assigns and tracks all of the storage locations associated with
each file in order to direct file I/O requests to the correct set
of OSTs and corresponding OSSs. Once a file is opened, the
MDS is not involved with I/O to the file. This is different from
many block-based clustered file systems where the MDS
controls block allocation, eliminating it as a source of
contention for file I/O.

• The Metadata Target (MDT) stores metadata (such as

filenames, directories, permissions and file layout) on storage

attached to an MDS. Storing the metadata on a MDT provides
an efficient division of labour between computing and
storage resources. Each file on the MDT contains the layout
of the associated data file, including the OST number and
object identifier and points to one or more objects associated
with the data file.

 View of the Lustre File System. The route for data movement from application
process memory to disk is shown by arrows.

When a compute node needs to create or access a file, it
requests the associated storage locations from the MDS and the
associated MDT. I/O operations then occur directly with the OSSs
and OSTs associated with the file bypassing the MDS. For read
operations, file data flows from the OSTs to memory. Each OST
and MDT maps to a distinct subset of the RAID devices. The total
storage capacity of a Lustre file system is the sum of the capacities
provided by the OSTs.

File Striping Basics

A key feature of the Lustre file system is its ability to
distribute the segments of a single file across multiple OSTs using

a technique called file striping. A file is said to be striped when its
linear sequence of bytes is separated into small chunks, or stripes,
so that read and write operations can access multiple OSTs
concurrently.

A file is a linear sequence of bytes lined up one after
another. Below Figure shows a logical view of a single file, File A,
broken into five segments and lined up in sequence.

Logical view of a file.

A physical view of File A striped across four OSTs in five distinct
pieces is shown in Figure 3.3.3.

Figure 3.3.3: Physical view of a file.

Storing a single file across multiple OSTs (referred to as
striping) offers two benefits: 1) an increase in the bandwidth
available when accessing the file and 2) an increase in the

available disk space for storing the file. However, striping is not
without disadvantages, namely: 1) increased overhead due to
network operations and server contention and 2) increased risk of
file damage due to hardware malfunction. Given the tradeoffs
involved, the Lustre file system allows users to specify the striping
policy for each file or directory of files using the lfs utility. The lfs
utility usage can be found in the Basic Lustre User Commands
section.

Stripe Alignment

Performance concerns related to file striping include
resource contention on the block device (OST) and request
contention on the OSS associated with the OST. This contention is
minimized when processes (who access the file in parallel) access
file locations that reside on different stripes.

Additionally, performance can be improved by minimizing
the number of OSTs in which a process must communicate. An
effective strategy to accomplish this is to stripe align your I/O
requests. Ensure that processes access the file at offsets which
correspond to stripe boundaries. Stripe settings should take into
account the I/O pattern utilized to access the file.

Aligned Stripes

In below figure we gave an example of a single file spread
across four OSTs in five distinct pieces. Now, we add information
to that example to show how the stripes are aligned in the logical
view of File A. Since the file is spread across 4 OSTs the stripe
count is 4. If File A has 9 MB of data and the stripe size is set to 1
MB it can be segmented into 9 equally sized stripes that will be
accessed concurrently. The physical and logical views of File A are
shown in below figure.

 Physical and Logical Views of File A.

In this example, the I/O requests are stripe aligned, meaning
that the processes access the file at offsets that correspond to
stripe boundaries.

Non-aligned Stripes

Next, we give an example where the stripes are not
aligned. Four processes write different amounts of data to a single
shared File B that is 5 MB in size. The file is striped across 4 OSTs
and the stripe size is 1 MB, meaning that the file will require 5
stripes. Each process writes its data as a single contiguous region
in File B. No overlaps or gaps between these regions should be
present; otherwise the data in the file would be corrupted. The
sizes of the four writes and their corresponding offsets are as
follows:

• Process 0 writes 0.6 MB starting at offset 0 MB

• Process 1 writes 1.8 MB starting at offset 0.6 MB

• Process 2 writes 1.2 MB starting at offset 2.4 MB

• Process 3 writes 1.4 MB starting at offset 3.6 MB

The logical and physical views of File B are shown in Figure 3.3.5.

Figure 3.3.5: Logical and Physical Views of File B.

None of the four writes fits the stripe size exactly so
Lustre will split each of them into pieces. Since these writes cross
an object boundary, they are not stripe aligned as in our previous
example. When they are not stripe aligned, some of the OSTs are
simultaneously receiving data from more than one process. In our
non-aligned example, OST 0 is simultaneously receiving data from
processes 0, 1 and 3; OST 2 is simultaneously receiving data from
processes 1 and 2; and OST 3 is simultaneously receiving data
from processes 2 and 3. This creates resource contention on the
OST and request contention on the OSS associated with the OST.
This contention is a significant performance concern related to
striping. It is minimized when processes (that access the file in
parallel) access file locations that reside on different stripes as in
our stripe aligned example.

Serial I/O

Serial I/O includes those application I/O patterns in which
one process performs I/O operations to one or more files. In
general, serial I/O is not scalable.

File­per­Process

File-per-process is a communication pattern in which
each process of a parallel application writes its data to a private
file. This pattern creates N or more files for an application run of N
processes. The performance of each process’s file write is
governed by the statements made above for serial I/O. However,
this pattern constitutes the simplest implementation of parallel
I/O due to the possibility of improved I/O performance from a
parallel file system.

 Write performance of a file-per-process I/O pattern as a
function of number of files/processes. The file size is 128 MB with
32 MB sized write operations. Performance increases as the
number of processes/files increases until OST and metadata
contention hinder performance improvements.

• Each file is subject to the limitations of serial I/O.

• Improved performance can be obtained from a parallel file

system such as Lustre. However, at large process counts
(large number of files) metadata operations may hinder
overall performance. Additionally, at large process counts
(large number of files) OSS and OST contention will hinder
overall performance.

Single­shared­file

A single shared file I/O pattern involves multiple
application processes which either independently or concurrently
share access to the same file. This particular I/O pattern can take
advantage of both process and file system parallelism to achieve
high levels of performance. However, at large process counts
contention for file system resources OSTs can hinder performance
gains.

 Two possible shared file layouts. The aggregate file
size in both cases is 1 and 2 GB depending on which block size is
utilized. The major difference in file layouts is the locality of the
data from each process. Layout #1 keeps data from a process in a
contiguous block, while Layout #2 strides this data throughout the
file. Thirty-two (32) processes will concurrently access this shared
file.

Write performance utilizing a single shared file accessed
by 32 processes. Stripe counts utilized are 32 (1 GB file) and 64 (2
GB file) with stripe sizes of 32 MB and 1 MB. A 1 MB stripe size on
Layout #1 results in the lowest performance due to OST
contention. Each OST is accessed by every process. Whereas, the
highest performance is seen from a 32 MB stripe size on Layout
#1. Each OST is accessed by only one process. A 1 MB stripe size
gives better performance with Layout #2. Each OST is accessed by
only one process. However, the overall performance is lower due
to the increased latency in the write (smaller I/O operations). With
a stripe count of 64 each process communicates with 2 OSTs.

 Write Performance of a single shared file as the number of
processes increases. A file size of 32 MB per process is utilized
with 32 MB write operations. For each I/O library (Posix, MPI-IO,
and HDF5) performance levels off at high core counts.

• The layout of the single shared file and its interaction with

Lustre settings is particularly important with respect to
performance.

• At large core counts file system contention limits the

performance gains of utilizing a single shared file. The major

limitation is the 160 OST limit on the striping of a single file.

Basic Lustre User Commands

Lustre's lfs utility provides several options for monitoring and
configuring your Lustre environment. In this section, we describe
the basic options that enable you to:

• List OSTs in the File System

• Search the Directory Tree

• Check Disk Space Usage

• Get Striping Information

• Set Striping Patterns

For a complete list of available options, type help at the lfs
prompt.

$ lfs help

To get more information on a specific option, type help along with
the option name.

$ lfs help option-name

We are using these commands to mount the lustre .

#/etc/init.d/lustre_storage start

#zpool import <device name>

#mount -t lustre <device name>/<device name> /lustre/<device
name>

unmount luster

#/etc/init.d/lustre_storage stop

#umount /lustrefs/<device name>

#zpool export <device name>

Recognize situations where file system contention may limit
performance

When an I/O pattern is scaled to large core counts performance
degradation may occur due to file system contention. This
situation arises when many-many more processes than file system
resources request I/O nearly simultaneously. Examples include
file-per-process I/O patterns which utilize over ten-thousand
processes/files and single-shared-file I/O patterns which utilize
over five-thousand processes accessing a single file. Potential
solutions involve decreasing the number of processes which
perform I/O simultaneously. For a file-per-process pattern this
may involve allowing only a subset of processes to perform I/O at
any particular time. For a single-shared file pattern this solution
may involve utilizing more than one shared-file in which a subset
of processes perform I/O. Additionally, some I/O libraries such as
MPI-IO allow for collective buffering which aggregates I/O from
the running processes onto a subset of processes which perform
I/O.

3.4 Operating System – CentOS:

An operating system is software, consisting of programs and
data that runs on computers manages computer hardware
resources, and provides common services for execution of various
application software. Operating system is the most important
type of system software in a computer system. Without an
operating system, a user cannot run an application program on
their computer, unless the application program is self booting.

For hardware functions such as input and output and
memory allocation, the operating system acts as an intermediary
between application programs and the computer hardware,
although the application code is usually executed directly by the

hardware and will frequently call the OS or be interrupted by it.

Operating systems are found on almost any device that
contains a computer—from cellular phones and video game
consoles to supercomputers and web servers.
Examples of popular modern operating systems are: BSD, Linux,
Mac OS X, Microsoft Windows and UNIX.

Linux refers to the family of Unix-like computer operating
systems using the Linux kernel. Linux can be installed on a wide
variety of computer hardware, ranging from mobile phones, tablet
computers, routers, and video game consoles,to mainframes and
supercomputers. Linux is a leading server operating system, and
runs the 10 fastest supercomputers in the world.

The development of Linux is one of the most prominent
examples of free and open source software collaboration;
typically all the underlying source code can be used, freely
modified, and redistributed, both commercially and non-
commercially, by anyone under licenses such as the GNU General
Public License.

Typically Linux is packaged in a format known as a Linux
distribution for desktop and server use. Some popular mainstream

Linux distributions include Debian (and its derivatives such as
Ubuntu), Fedora and openSUSE. Linux distributions include
the Linux kernel and supporting utilities and libraries to fulfill the
distribution's intended use.

3.5. Cluster Management

Login from Windows Machine

Step1:
Get the latest version of putty

Step2:
Run putty and try to ssh connection to <Kohinoor3>

Login from Linux machine

[root@localhost ~] ssh netweb@kohinoor3
Password:

Creating User account into the Kohinoor cluster

User Creation:
Create a user account and propagate the information to the
compute nodes with:

/root/sbin/cluster_useradd <username>

It will Ask the Password only one time.

Keep on Pressing Enter key till end.

User deletion:

#/root/sbin/cluster_userdel <username>

Group Creation:

#/root/sbin/cluster_groupadd <groupname>

Group deletion:

#/root/sbin/cluster_groupdel <groupname>

Adding a user to group/groups

#/root/sbin/cluster_add_user_to_group <username>
 <group1,group2,etc>

Copy a file or directory of every compute node:

#module load utils/pdsh
#pdcp -r -a <filename/dictory> <destination directory>

Copy a file to defined compute nodes:

pdcp -r -w node1,node2,etc <filename/dictory> <destination
directory>
Copy a file to defined compute node:

scp -r <filename/folder> <nodename:/path of destination folder>

Copy a data from end-user Windows machine to cluster

Step 1:
Install and start WinSCP, then following screen is shown. Click
'Login' button.

Step 2:
It’s possible to upload or download files simple as drap and drop.

Copy a data from end-user Linux machine to cluster

[root@localhost ~] scp <filename> support@172.16.10.24

Copying a file into user netweb home directory

[root@localhost ~] scp –r <directory> support@172.16.10.24

Copying a directory into user netweb home directory

3.6 Module Management:

The Environment Modules package provides for the
dynamic modification of a user's environment via modulefiles.

Each modulefile contains the information needed to configure the
shell for an application. Once the Modules package is initialized,
the environment can be modified on a per-module basis using the
module command which interprets modulefiles. Typically
modulefiles instruct the module command to alter or set shell
environment variables such as PATH, MANPATH, etc. modulefiles
may be shared by many users on a system and users may have
their own collection to supplement or replace the shared
modulefiles.

Modules can be loaded and unloaded dynamically and atomically,
in an clean fashion.

Module need to load some as example if you run pdsh
command and you are getting following message.

Then you can find that module is avail for that application
by the command module avail.

For loading that module you have to load the module
Example: module load utils/pdsh.

We can check which modules are loaded by the command module
list.

We can unload the module as well by the command module

unload.

3.7. Software – Compilers, Libraries, Visualization & Applications

Compilers:
 a. GNU compilers

C = /usr/bin/gcc
C++ = /usr/bin/g++
FORTRAN = /usr/bin/gfortran, /usr/bin/f95

 b. MPI (Parallel) compilers
mpicc = /apps/mpi/mvapich2-2.1-gcc/bin
mpic++ = /apps/mpi/mvapich2-2.1-gcc/bin
mpif77 = /apps/mpi/mvapich2-2.1-gcc/bin
mpif90 = /apps/mpi/mvapich2-2.1-gcc/bin

Applications:

List of Application

Application CPU

Gromacs YES

LAMPS YES

FFTW YES

GROMACS
CPU:
Location = /apps/gromacs
Executable file = /apps/gromacs/5.0.6-cpu/bin/GMXRC
GPU:
Location = /apps/gromacs
Executable file = /apps/gromacs/5.0.6-gpu/bin/GMXRC

LAMPS

CPU:
Location = /apps/lamps
Executable file = /apps/lamps/lmp_icc_openmpi

FFTW(2.1.5)

Location = /apps/libs/fftw-2.1.5/

FFTW(3.3.5)

Location = /apps/libs/fftw-3.3.5/

3.8. Scheduler & Distributed Resource Manager (SLURM)

The Simple Linux Utility for Resource Management
(Slurm) is an open source, fault-tolerant, and highly scalable
cluster management and job scheduling system for large and
small Linux clusters. Slurm requires no kernel modifications for its
operation and is relatively self-contained. As a cluster workload
manager, Slurm has three key functions. First, it allocates exclusive
and/or non-exclusive access to resources (compute nodes) to
users for some duration of time so they can perform work.
Second, it provides a framework for starting, executing, and
monitoring work (normally a parallel job) on the set of allocated
nodes.

Commands

Man pages exist for all Slurm daemons, commands, and
API functions. The command option --help also provides a brief
summary of options. Note that the command options are all case
sensitive.

sacct is used to report job or job step accounting information
about active or completed jobs.

salloc is used to allocate resources for a job in real time. Typically
this is used to allocate resources and spawn a shell. The shell is
then used to execute srun commands to launch parallel tasks.

sattach is used to attach standard input, output, and error plus
signal capabilities to a currently running job or job step. One can
attach to and detach from jobs multiple times.

sbatch is used to submit a job script for later execution. The script
will typically contain one or more srun commands to launch
parallel tasks.

sbcast is used to transfer a file from local disk to local disk on the
nodes allocated to a job. This can be used to effectively use

diskless compute nodes or provide improved performance relative
to a shared file system.

scancel is used to cancel a pending or running job or job step. It
can also be used to send an arbitrary signal to all processes
associated with a running job or job step.

scontrol is the administrative tool used to view and/or modify
Slurm state. Note that many scontrol commands can only be
executed as user root.

sinfo reports the state of partitions and nodes managed by Slurm.
It has a wide variety of filtering, sorting, and formatting options.

smap reports state information for jobs, partitions, and nodes
managed by Slurm, but graphically displays the information to
reflect network topology.

squeue reports the state of jobs or job steps. It has a wide variety
of filtering, sorting, and formatting options. By default, it reports
the running jobs in priority order and then the pending jobs in
priority order.

srun is used to submit a job for execution or initiate job steps in
real time. srun has a wide variety of options to specify resource
requirements, including: minimum and maximum node count,
processor count, specific nodes to use or not use, and specific
node characteristics (so much memory, disk space, certain
required features, etc.). A job can contain multiple job steps
executing sequentially or in parallel on independent or shared
resources within the job's node allocation.

strigger is used to set, get or view event triggers. Event triggers
include things such as nodes going down or jobs approaching their
time limit.

sview is a graphical user interface to get and update state
information for jobs, partitions, and nodes managed by Slurm.

Example

The sinfo command has many options to easily let you
view the information of interest to you in whatever format you
prefer. See the man page for more information.

sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
debug* up 30:00 2 down* node[1-2]
debug* up 30:00 3 idle node[3-5]
batch up 30:00 3 down* node[6,13,15]
batch up 30:00 3 alloc node[7-8,14]
batch up 30:00 4 idle node[9-12]

Next we determine what jobs exist on the system using the
squeue command. The ST field is job state. Two jobs are in a
running state (R is an abbreviation for Running) while one job is in
a pending state (PD is an abbreviation for Pending). The TIME field
shows how long the jobs have run for using the format days-
hours:minutes:seconds. The NODELIST(REASON) field indicates
where the job is running or the reason it is still pending. Typical
reasons for pending jobs are Resources (waiting for resources to
become available) and Priority (queued behind a higher priority
job). The squeue command has many options to easily let you view
the information of interest to you in whatever format you prefer.
See the man page for more information.

squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

65646 batch chem mike R 24:19 2 node[7-8]
65647 batch bio joan R 0:09 1 node14
65648 batch math phil PD 0:00 6 (Resources)

One common mode of operation is to submit a script for
later execution. In this example the script name is my.script and we
explicitly use the nodes node9 and node10 (-w "node[9-10]", note
the use of a node range expression). We also explicitly state that
the subsequent job steps will spawn four tasks each, which will
insure that our allocation contains at least four processors (one
processor per task to be launched). The output will appear in the
file my.stdout ("-o my.stdout"). This script contains a timelimit for
the job embedded within itself. Other options can be supplied as
desired by using a prefix of "#SBATCH" followed by the option at
the beginning of the script (before any commands to be executed
in the script). Options supplied on the command line would
override any options specified within the script. Note that
my.script contains the command /bin/hostname that executed on
the first node in the allocation (where the script runs) plus two job
steps initiated using the srun command and executed sequentially.

cat my.script
#!/bin/sh
#SBATCH --time=1
/bin/hostname
srun -l /bin/hostname
srun -l /bin/pwd

sbatch -n4 -w "node[9-10]" -o my.stdout my.script
sbatch: Submitted batch job 469

node1: cat my.stdout
node9
0: node9
1: node9
2: node10
3: node10

The final mode of operation is to create a resource
allocation and spawn job steps within that allocation. The salloc
command is used to create a resource allocation and typically start
a shell within that allocation. One or more job steps would
typically be executed within that allocation using the srun
command to launch the tasks . Finally the shell created by salloc
would be terminated using the exit command. Slurm does not
automatically migrate executable or data files to the nodes
allocated to a job. Either the files must exists on local disk or in
some global file system (e.g. NFS or Lustre). We provide the tool
sbcast to transfer files to local storage on allocated nodes using
Slurm's hierarchical communications. In this example we use
sbcast to transfer the executable program a.out to /tmp/joe.a.out
on local storage of the allocated nodes. After executing the
program, we delete it from local storage.

salloc -N1024 bash

$ sbcast a.out /tmp/joe.a.out

Granted job allocation 471

$ srun /tmp/joe.a.out

Result is 3.14159

$ srun rm /tmp/joe.a.out

$ exit

salloc: Relinquishing job allocation 471

In this example, we submit a batch job, get its status, and cancel it.

node1: sbatch test

srun: jobid 473 submitted

node1: squeue

JOBID PARTITION NAME USER ST TIME NODES
NODELIST(REASON)

 473 batch test jill R 00:00 1 node9

node1: scancel 473

node1: squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

SLURM Script on Kohinoor3

We have given submit.sh in so you can use that script as as
demo.

 #!/bin/bash -l
#SBATCH -p compute
-p partition Name
#SBATCH -N 2
-N number of nodes
#SBATCH -n 40
-n Number of tasks
#SBATCH -c 1
-c number of CPUs per task
#SBATCH -t 03:00:00
-t time allocate

module load mpi/gcc/openmpi/2.0.1
mpicc -o cpi cpi.c
#export OMP_NUM_THREADS=8
thereads are needed in the program .. then export omp tnum
threads
mpirun ./cpi

3.9. Troubleshooting SLURM
This guide is meant as a tool to help system

administrators or operators troubleshoot Slurm failures and
restore services.

• Slurm is not responding

• Jobs are not getting scheduled

• Jobs and nodes are stuck in COMPLETING state

• Notes are getting set to a DOWN state

• Networking and configuration problems

Slurm is not responding

1.Execute "scontrol ping" to determine if the primary and
backup controllers are responding.

2.If it responds for you, this could be a networking or
configuration problem specific to some user or node in the
cluster.

3.If not responding, directly login to the machine and try again
to rule out network and configuration problems.

4.If still not responding, check if there is an active slurmctld
daemon by executing "ps -el | grep slurmctld".

5.If slurmctld is not running, restart it (typically as user root
using the command "/etc/init.d/slurm start"). You should
check the log file (SlurmctldLog in the slurm.conf file) for an
indication of why it failed. If it keeps failing, you should
Contact your Administrator.

6.If slurmctld is running but not responding (a very rare

situation), then kill and restart it (typically as user root using
the commands "/etc/init.d/slurm stop" and then
"/etc/init.d/slurm start").

7.If it hangs again, increase the verbosity of debug messages
(increase SlurmctldDebug in the slurm.conf file) and restart.
Again check the log file for an indication of why it failed. At
this point, you should Contact your Administrator.

8.If it continues to fail without an indication as to the failure
mode, restart without preserving state (typically as user root
using the commands "/etc/init.d/slurm stop" and then
"/etc/init.d/slurm startclean"). Note: All running jobs and
other state information will be lost.

Jobs are not getting scheduled

This is dependent upon the scheduler used by Slurm. Executing
the command "scontrol show config | grep SchedulerType" to
determine this. For any scheduler, you can check priorities of jobs
using the command "scontrol show job".

• If the scheduler type is builtin, then jobs will be executed in

the order of submission for a given partition. Even if
resources are available to initiate jobs immediately, it will be
deferred until no previously submitted job is pending.

• If the scheduler type is backfill, then jobs will generally be

executed in the order of submission for a given partition with
one exception. Otherwise Contact your Administrator.

Jobs and nodes are stuck in COMPLETING state

This is typically due to non-killable processes associated with the
job. Slurm will continue to attempt terminating the processes with
SIGKILL, but some jobs may be stuck performing I/O and non-
killable. This is typically due to a file system problem and may be

addressed in a couple of ways.

1.Fix the file system and/or reboot the node. -OR-

2.Set the node to a DOWN state and then return it to service
("scontrol update NodeName=<node> State=down
Reason=hung_proc" and "scontrol update
NodeName=<node> State=resume"). This permits other jobs
to use the node, but leaves the non-killable process in place.
If the process should ever complete the I/O, the pending
SIGKILL should terminate it immediately. -OR-

3.Use the UnkillableStepProgram and UnkillableStepTimeout
configuration parameters to automatically respond to
processes which can not be killed, by sending email or
rebooting the node. For more information, see the slurm.conf
documentation.

Notes are getting set to a DOWN state

1.Check the reason why the node is down using the command
"scontrol show node <name>". This will show the reason why
the node was set down and the time when it happened. If
there is insufficient disk space, memory space, etc. compared
to the parameters specified in the slurm.conf file then either
fix the node or change slurm.conf.

2.If the reason is "Not responding", then check communications
between the control machine and the DOWN node using the
command "ping <address>" being sure to specify the
NodeAddr values configured in slurm.conf. If ping fails, then
fix the network or addresses in slurm.conf.

3.Next, login to a node tha. Slurm considers to be in a DOWN
state and check if the slurmd daemon is running with the
command "ps -el | grep slurmd". If slurmd is not running,

restart it (typically as user root using the command
"/etc/init.d/slurm start"). You should check the log file
(SlurmdLog in the slurm.conf file) for an indication of why it
failed. You can get the status of the running slurmd daemon
by executing the command "scontrol show slurmd" on the
node of interest. Check the value of "Last slurmctld msg
time" to determine if the slurmctld is able to communicate
with the slurmd. If it keeps failing, you should Contact your
Administrator.

4.If slurmd is running but not responding (a very rare situation),
then kill and restart it (typically as user root using the
commands "/etc/init.d/slurm stop" and then
"/etc/init.d/slurm start").

5.If still not responding, try again to rule out network and
configuration problems.

6.If still not responding, increase the verbosity of debug
messages (increase SlurmdDebug in the slurm.conf file) and
restart. Again check the log file for an indication of why it
failed. At this point, you should Contact your Administrator.

7.If still not responding without an indication as to the failure
mode, restart without preserving state (typically as user root
using the commands "/etc/init.d/slurm stop" and then
"/etc/init.d/slurm startclean"). Note: All jobs and other state
information on that node will be lost.

Networking and configuration problems

1.Check the controller and/or slurmd log files (SlurmctldLog
and SlurmdLog in the slurm.conf file) for an indication of why
it is failing.

2.Check for consistent slurm.conf and credential files on the
node(s) experiencing problems.

3.If this is user-specific problem, check that the user is
configured on the controller computer(s) as well as the
compute nodes. The user doesn't need to be able to login,
but his user ID must exist.

4.Check that compatible versions of Slurm exists on all of the
nodes (execute "sinfo -V" or "rpm -qa | grep slurm"). The
Slurm version numbers contain three digits, which represent
the major, minor and micro release numbers in that order
(e.g. 14.11.3 is major=14, minor=11, micro=3). Changes in the
RPCs (remote procedure calls) and state files will only be
made if the major and/or minor release number changes.
Slurm daemons will support RPCs and state files from the
two previous minor or releases (e.g. a version 15.08.x
SlurmDBD will support slurmctld daemons and commands
with a version of 14.03.x or 14.11.x).

3.10. Monitoring Tool – Ganglia

Ganglia is a scalable distributed system monitor tool for
high-performance computing systems such as clusters and grids. It
allows the user to remotely view live or historical statistics (such
as CPU load averages or network utilization) for all machines that
are being monitored.

There are three services are mandatory for Ganglia. At
server, httpd, gmetad and gmond, and at client, gmond only. If
user wants to restart these services, he has to login as root, and
restart three services at master node and one at every compute

nodes:

systemctl restart httpd
systemctl restart gmetd
systemctl restart gmond

To open the web interface of Ganglia, type the following URL in
browser:

kohinoor3 /ganglia

In Figure 3.13, there is a screenshot which give a brief picture of
ganglia
output:

3.11. System Management:

The Intelligent Platform Management Interface (IPMI) is a
set of computer interface specifications for an autonomous
computer subsystem that provides management and monitoring
capabilities independently of the host system's CPU, firmware
(BIOS or UEFI) and operating system. IPMI defines a set of
interfaces used by system administrators for out-of-band

http://kohinoor3/ganglia
http://kohinoor3/ganglia

management of computer systems and monitoring of their
operation. For example, IPMI provides a way to manage a
computer that may be powered off or otherwise unresponsive by
using a network connection to the hardware rather than to an
operating system or login shell.

Functionality:

Using a standardized interface and protocol allows systems-
management software based on IPMI to manage multiple
disparate servers. As a message-based, hardware-level interface
specification, IPMI operates independently of the operating
system (OS) to allow administrators to manage a system remotely
in the absence of an operating system or of the system
management software. Thus IPMI functions can work in any of
three scenarios:

• before an OS has booted (allowing, for example, the remote

monitoring or changing of BIOS settings)
• when the system is powered down

• after OS or system failure– the key characteristic of IPMI

compared with in-band system management such as by
remote login to the operating system using SSH

System administrators can use IPMI messaging to monitor
platform status (such as system temperatures, voltages, fans,
power supplies and chassis intrusion); to query inventory
information; to review hardware logs of out-of-range conditions;
or to perform recovery procedures such as issuing requests from a
remote console through the same connections e.g. system power-
down and rebooting, or configuring watchdog timers. The

standard also defines an alerting mechanism for the system to
send a simple network management protocol (SNMP) platform
event trap (PET).

The monitored system may be powered off, but must be
connected to a power source and to the monitoring medium,
typically a local area network (LAN) connection. IPMI can also
function after the operating system has started, and exposes
management data and structures to the system management
software. IPMI prescribes only the structure and format of the
interfaces as a standard, while detailed implementations may vary.
An implementation of IPMI version 1.5 can communicate via a
direct out-of-band local area network (LAN) or serial connection or
via a side-band local area network (LAN) connection to a remote
client. The side-band LAN connection utilizes the board network
interface controller (NIC). This solution is less expensive than a
dedicated LAN connection but also has limited bandwidth.

Systems compliant with IPMI version 2.0 can also
communicate via serial over LAN, whereby serial console output
can be remotely viewed over the LAN. Systems implementing IPMI
2.0 typically also include KVM over IP, remote virtual media and
out-of-band embedded web-server interface functionality,
although strictly speaking, these lie outside of the scope of the
IPMI interface standard.

IPMI runs on a separate hardware subsystem directly
attached to a motherboard / server; either hard wired onboard or
as an add-in card, this hardware is referred to as a baseboard
management controller (BMC).

The BMC functions separately to the motherboard and runs
its own independent software stack or firmware to the
motherboard it is controlling and monitoring. This enables the

administrator to connect to the BMC and control and monitor the
system even if it is powered down, crashed or without any O/S.

Typical features of an IPMI BMC are as follows:

• Hardware monitoring: CPU / system temperatures, fan

speeds / status, power supply status and chassis intrusion can
be monitored remotely. In the event of failures or predefined
thresholds being exceeded an event is logged and email
notifications can be sent to an administrator for immediate
action.

Example sensor readout from Supermicro's IPMI View

• Remote Power Control:

 Power On, Power Off, Reset & Power Cycle servers
remotely. This feature is useful to control power and shut
down systems when not in use. In the event of an operating
system crash, it's possible to reboot a system and bring it
back online. Additionally, in order to identify a system in a
crowded data centre there is a UID LED which can be blinked
on the front and back of the system to enable technicians to
easily identify this.

Example power control in Supermicro's IPMI View

• Remote Control:

 Serial over LAN (SOL) enables a basic text output of
the screen and remote control for diagnostic and
administration of CLI based applications and operating
systems. This feature is often used by Linux & UNIX
administrators and also by some Windows administrators via
the EMS (Emergency Management Services) feature.

Example SOL Output from Supermicro's IPMI View

IPMI +

Additionally to these features many system vendors build on
this base and create a more complete remote management
solution. Supermicro for example support the following on almost
all of their X8 and X9 based motherboards.

• KVM over IP Support:

 Using a Java based console it's possible to gain full
graphical KVM access to a system over an IP network. This
allows access at all times, even before an O/S has booted, this
means that you can gain access to the BIOS or DOS
applications, It's even possible to perform installations of
Linux and Windows remotely from this console.

Example KVM over IP output from Supermicro's IPMI View

• Remote Media Redirection:

 Typically integrated into the KVM over IP support
this feature enables the administrator to physically attach
USB storage devices to the remote controlled system. This is
in the format of a local physical drive such as a USB pen drive
attached to the administrators system or an image file of a
DVD/CD in ISO format or even a floppy raw disk image. This
means that when combined with KVM over IP O/S installs and
firmware / BIOS updates are possible remotely without any
need for local hands on support.

Example media redirection function of Supermicro's KVM over IP
interface

IPMI Connectivity

 All these features are delivered remotely over a standard
IP network port on the managed system. Most systems have both
a dedicated port for IPMI traffic or if preferred it's possible to run
this traffic over the 1st LAN port on the motherboard (eth0)
alongside the systems standard IP traffic.

The dedicated IPMI LAN is above the USB ports on this Supermicro

X8STI-F motherboard

Open IPMI Tools

For CLI control of IPMI there are several open source
clients which can be used to connect to and control IPMI BMC's.
The most common example of which is the Open IPMI package;
this offers excellent functionality and can be easily scripted. These
tools and user guides are available to download directly from
sourceforge here: http://openipmi.sourceforge.net/

Example ipmitool output with features

Supermicro IPMI Tool CLI
Supermicro has extended the functionality of the Open

IPMI toolset with their own tool -SMCIPMITool which enables
support for specific Supermicro features such as controlling their
blade enclosure allowing monitoring and management over IPMI.

This tool is available for download directly from
Supermicro's ftp here:
ftp://ftp.supermicro.com/utility/SMCIPMItool/

Supermicro Web GUI
For casual use Supermicro provide a web GUI which is

available directly on the IP address of the BMC module. This
interface enables the administrator to take advantage of the full
range of functions including KVM over IP and the media
redirection using a Java applet without the requirement to install
or load additional software.

Example of Supermicro's IPMI web interface showing sensor
readouts

Supermicro IPMI View
 For managing groups of systems Supermicro provide a
Java tool called IPMI View which runs on a variety of platforms. It
enables an administrator to keep track of multiple IPMI sessions
and if required perform operations on groups of systems with a
few simple clicks. IPMI View can be downloaded from the
following location: ftp://ftp.supermicro.com/utility/IPMIView/

IPMI View Running on Mac OSX

Initial IPMI Configuration
 Configuring IPMI is a simple process; the initial setup is
simply to configure an IP address with which to connect to the
BMC. This is done either in the motherboard BIOS under the
Advanced > IPMI Configuration > LAN Configuration tab or by
using the Supermicro IPMICFG tool from your O/S.

IPMICFG Running in Window

IPMI Configuration in the motherboard BIOS using KVM/IP from
Mac OSX

Security

 The default username and password for Supemicro's IPMI
module is ADMIN in uppercase, however this should be changed
immediately in any production environment to avoid any security
breaches. It's possible to use local authentication and groups for
varying levels or access or even connect to an LDAP or Active
Directory service for authentication.

Conclusion

 IPMI is an invaluable tool for any administrator, it enables
them to monitor systems on a hardware level and perform
essential maintenance remotely.

Without it system installation, trouble shooting and
monitoring can be a costly time consuming experience with
collocated systems – a crash causing a system hang requiring a
system reboot can in some situations require a trip to a data
centre in another city. Simply probing the KVM to determine the
fault and if necessary power cycling the node can be done in
seconds resulting in a faster response time.

As all administrators know, if undiscovered, hardware failures can
cause slowdown or even the complete halt of critical services.
Email notifications of PSU or fan failures and changes in
temperature / voltage can ensure that proactive maintenance can
take place and avoid costly unscheduled downtime.

 All of these factors make IPMI an excellent tool for
reducing your TCO and improving your productivity as an
administrator and your company's services as a whole.

Chapter 4
4. Startup and Shutdown Procedures

4.1 Shutdown Sequence

Step1.
(Make sure all jobs are killed or cancel the jobs)
Module load utils/pdsh
#pdsh -a /etc/init.d/lustre_storage stop
(It should give /storage mount service is stop if not redo the above
step)

Step2. On master
/etc/init.d/lustre_storage stop

Step3.
#pdsh -a poweroff

Step4.
#ssh mds2
#umount /lustrefs/ost0002
#umount /lustrefs/ost0003
#umount /lustrefs/ost0004
#umount /lustrefs/ost0005
#luster_rmmod
#zpool export ost0002
#zpool export ost0003
#zpool export ost0004
#zpool export ost0005
#exit

Step5. On master
#ssh mds1
#umount /lustrefs/ost0000
#umount /lustrefs/ost0001
#umount /lustre/mdt
(this will take time)
#lustre_rmmod

#zpool export ost0000
#zpool export ost0001
#zpool export mdt
#exit

Step6.
#ssh mds1
#poweroff (mds1)
#ssh mds2
#poweroff (mds2)

Step7.
#poweroff (master)

4.2 Startup Sequence

Step1.
(Make sure All ethernet switch and IB switches are power on)
Power on JBOD

Step2.
Power on master,mds1 and mds2.

Step3.
Login to master as a root.
#systemctl start opensmd

Step4.
#ssh mds1
#zpool import mdt
#zpool import ost0000
#zpool import ost0001
#modprobe -v lustre
#mount -t lustre mdt/mdt /lustre/mdt
#mount -t lustre ost0000/ost0000 /lustre/ost0000
#mount -t lustre ost0001/ost0001 /lustre/ost0001
#exit

Step5.
#ssh mds2
#zpool import ost0002
#zpool import ost0003
#zpool import ost0004
#zpool import ost0005
#modprobe -v lustre
#mount -t lustre ost0002/ost0002 /lustre/ost0002
#mount -t lustre ost0003/ost0003 /lustre/ost0003
#mount -t lustre ost0004/ost0004 /lustre/ost0004
#mount -t lustre ost0005/ost0005 /lustre/ost0005
#exit

Step6. On master

/etc/init.d/lustre_storage start

Step7. Power on all compute ,GPU nodes

Step8.
#module load utils/pdsh
#pdsh -a /etc/init.d/lustre_storage start

Chapter 5
5. EScalation Matrix

Service Desk Timimg : 9:00 AM to 6:00 PM (Monday to Staurday)

HPC Support

Level 1 Netweb Hydrabad

Support Team (Kiran or Manoj Paul)

04040269635 (office)

Mr. Kiran Mob. -9703137537

Mr. Manoj Paul Mob.- 8686038546

supporthyd@netwebindia.com

Level 2 Peg Netweb Faridabad

Peg Team (Mr. Rahul or Mr. C. Raja)

0129- 2310400 (Ext . 460 or 458)

peg@netwebindia.com

Level 3 Mr. Hemant Agrawal

CTO

0129- 2310400 (Ext. 422)

hemat@netwebindia.com

Top Level Mr. Sanjay Lodha

CEO

0129-2310400(Ext. 430)

sanjay@netwebindia.com

	Lustre Components
	File Striping Basics
	Stripe Alignment
	Serial I/O
	Single-shared-file
	Basic Lustre User Commands
	Commands
	Example
	3.9. Troubleshooting SLURM
	IPMI +
	IPMI Connectivity
	Open IPMI Tools
	Supermicro IPMI Tool CLI
	Supermicro Web GUI
	Supermicro IPMI View
	Initial IPMI Configuration
	Security
	Conclusion

